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Abstract

We develop a formal representation of the technique introduced in (Shawe-Taylor, Bartlett,
Williamson, & Anthony, 1998; Shawe-Taylor & Cristianini, 1998) for bounding the generaliza-
tion error of support vector machines. As a consequence we provide a framework that can be
utilized to link learning strategies to their performance bounds in such a way that the bounds
are expressed in terms of the structural properties of the learning strategy (e.g. characteri-
zations of the optimum classifier in terms of the structure of the finite sample optimization
criterion and its value at optimum). We use this framework to provide performance bounds for
a class of support vector machines that includes the soft margin learning strategies commonly
used in practice. We also show how to eliminate the effects of the center and scale of the data in
the learning theorem. We apply this framework to improve results obtained in (Shawe-Taylor
& Cristianini, 1998) for the 2-norm soft margin learning strategy by exploiting a relationship
between covering numbers of classes of linear functions and covering numbers of linear opera-
tors. This result is expressed in terms of the finite sample criterion value at optimum. Finally
we show how this bound can be expressed in terms of the random process.
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1 Introduction

Vapnik’s support vector machines provide a remarkably powerful and effective framework for
classification (Vapnik, 1998). A rigorous analysis of their generalization error was first achieved
in (Shawe-Taylor et al., 1998; Shawe-Taylor & Cristianini, 1998). However there is much yet
to be done with this analysis. For example the bounds in (Shawe-Taylor & Cristianini, 1998)
appear to be inadequate for large sample size (see the beginning of Section 8 for more details).
In addition we would like bounds that incorporate the fact that the classifier is determined by
solving a soft margin optimization problem. Finally, although their technique appears quite
powerful it is not clear how it can be applied to other learning strategies.

In this paper we develop a formal representation of the technique in (Shawe-Taylor &
Cristianini, 1998). This facilitates the analysis of other learning strategies which we refer to
collectively as support vector machines because of their similarity with the soft margin support
vector machines of (Vapnik, 1998). It also allows incorporation of the fact that the classifier
is a solution of a specific learning strategy. In addition we have improved their results by
utilizing a relationship described in (Williamson, Smola, & Scholkopf, 2002) between covering
numbers of classes of linear functions and covering numbers of linear operators. In particular
this improvement provides performance guarantees with much better large sample behavior.

This paper is organized as follows. In Section 2 we define the o-norm soft margin learning
strategy. In Section 3 we derive a theorem (Theorem 2) providing bounds on the probability
that there exists a function whose minimum value over a m—sample is at least v larger than
its value on a nontrivial fraction of future samples. Theorem 2 is based on a result in (Shawe-
Taylor et al., 1998) and forms the foundation for their technique. In Section 5 we present a
general learning theorem (Theorem 3) which is obtained by applying the extension of (Shawe-
Taylor & Cristianini, 1998) described in Section 4 to Theorem 2. In Section 6 we introduce
the notion of observables as quantities which are available to the practitioner. We then present
our main result (Theorem 5) describing the performance of an arbitrary learning strategy in
terms of covering numbers of subsets of affine functions, where these subsets are determined by
the learning strategy and the value of the observables. In Section 7 we describe the important
case where the learning strategy is the minimization of one of the observables. In Section 8 we
formalize the relationship described in (Williamson et al., 2002) between covering numbers of
classes of linear functions and covering numbers of linear operators. In Section 9 we describe
how the o-norm soft margin learning strategy fits into this general framework. This enables us
to provide performance guarantees for the 2-norm soft margin learning strategy that have much
better large sample behavior than in (Shawe-Taylor & Cristianini, 1998). These guarantees have
the added benefit that they are expressed in terms of the 2-norm optimization criterion value
at optimum and consequently express (implicitly) the influence of the free parameters of the
optimization criterion on performance. We conclude Section 9 with a program for determining
performance guarantees for the more general o-norm soft margin learning strategies. In Section
10 we describe the interaction between symmetries of the learning strategy and prior informa-
tion on Z. In particular we show how to eliminate the effects of the center and scale of Z in
the learning theorem. Finally, in Section 11 we discuss the importance of learning strategies
consisting of minimizing an empirical mean over the m-sample. In particular we show that
the optimal value of the m-sample 2-norm criterion is concentrated below the optimal value
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of the mean 2-norm criterion in terms of properties of the random variable Z. Consequently
our performance guarantees for the 2-norm learning strategy can be expressed in terms of the
optimal value of the mean 2-norm criterion and other functions of the random variable Z.

2 o¢-norm soft margin support vector machines

Let X be a Banach space with dual space X*. Consider a random variable Z = (X,Y’) with
Y = {1,—-1}. For simplicity we do not emphasize the difference between a Z-valued random
variable and the space Z and we will try to not let this cause confusion. Given an m-sample
2™ ={z;,i =1,..,m}, we design a linear classifier y = sign(¢ - x + b) with ¢ € X* and

sign(r) =1, r >0

sign(r) = -1, r <0

by minimizing the o-norm soft margin optimization criterion
1 s, 1 N,
J(d]vbaflv"vgm) = E |¢| +lefz (1)
1=

with respect to (¢, b) and &;, subject to the constraints
§i > 1—yi( -2 +0) (2)
& 2 0. (3)

For o > 1 this is a convex programming problem. When ¢ = 1 or 2 it is a quadratic convex
programming problem. We optimize with respect to &1, .., &y, for fixed 1, b to obtain the equiv-
alent unconstrained optimization problem which we call the o-norm soft margin optimization
problem with criterion

Ton(,0) = - (W DI UCR] b)) o
=1

with

d(z,1,b) = max(1 — y(¢ - © + b),0). (5)

It is possible to define the slack variables differently. For example, for v > 0, let

d’Y(Zaz/va) :maX(V—y(T/Jx%-b),O) (6)
and let
1 1 &
Jom . a(9,0) = — <|TZJ|2 +xe ng(zwlfab)) (7)
i=1
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be the o-norm soft margin criterion. One obtains

P b
Tema(h,0) = zmlv 7a (7 7)

so that (1, bs) € argmingy y) Jom 4 A (), b) if and only if (w* b*) € argmingy) J 71*%A(¢’ b).

Since the classifier determined by (¢* bv*) is the same as that determined by (¢, bs), the classi-
fier determined by the o-norm soft margin optimization problem with a value of v other than 1
can be implemented by modifying the choice of A to 1~z A in the v = 1 optimization criterion.
Consequently, we only consider the slacks defined in equation 5.

As in Vapnik’s theory of empirical risk minimization we want to provide bounds for the
generalization error of classifiers built by optimizing the o-norm soft margin criterion utilizing
the fact that they are optimizers. In this paper we show that the technique developed by
(Shawe-Taylor et al., 1998) and (Shawe-Taylor & Cristianini, 1998) is well suited to this task. In
the next section we derive the separation theorem that forms the foundation for their technique.

3 The separation theorem

We begin with some preparation. For any real valued function class F and any ¢ > 0, let the
squashed class m;(F) be defined by composition f — m; o f with the squashing function

m(s) =0, s<0
m(s) =5, 0<s<t
m(s) =t, s>t.
For a pseudometric space (M, d) with pseudometric d, the covering number N (e, M, d) is

the smallest number of open balls of radius € that cover M. For a class of functions F on a
space Z with an m-sample 2™ we use the pseudometric

dom(f,9) = max|f(z) — g(2)|

and denote by N (e, F,d,m) its covering numbers. When the possible values of the m-sample
are constrained to a subset 2 C Z we let

N(e, F,m,Q) = sup N(e, F,dm) (8)

Mz €Qi=1,..,m
denote the the largest covering numbers obtainable for Q constrained m-samples.

The fundamental theorem that we use is a less general version of Lemma 4.6 from (Shawe-
Taylor et al., 1998).

Theorem 1. Let Z be a random variable. Let v > 0 be fixed and let F denote a class of real
valued functions on Z. Suppose the support of Z is contained in the subset Q) C Z. Let 2™
denote the first half and w™ the second half of 2m iid samples. Then

Pzmwm <3f eF: mzlnf(zl) >, {7« flw;) <0} > me) <N (%,7@(.7:),2771,9) 27,
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Proof. First we observe that

Pamyrm (3 € Fomin f(29) 2 9, i f (ws) < 0}] > me) =

Pymiwn (31 € m(F),min £ (1) > 7, {i s f(wy) < 0} > me).

Consider a minimal v/2 cover B,mym of m,(F) in the pseudometric d,m,m. That is for every
f € m,(F) there exists an f € B,mym such that |f(2) — f(z)| < 7/2 for all z € 2™w™.
Consequently for any f € m, (F) with min; f(z;) > v and |{¢ : f(w;) < 0} > me there is an
f € Bomym with min; f(z) > /2 and |{i : f(w;) < ~/2}| > me so that

Pzmiwn (3f € my(F),min f () 2 7, {i : f(ws) < 0}] > me)

< Pzmwm (ﬂf € Bomym,min f(z) > /2, [{i : f(wi) <~/2} > me)

For fixed f, we observe that the event {z"w™ : min; f(z;) > v/2, {7 : f(w;) < v/2} > me}
implies that the smallest me samples must be in the right hand sample w™. Consequently by
introducing the permutation symmetries on z™w™ we observe that a fraction of at most 27"*¢

of the sequences obtained through the permutations can satisfy the condition. Therefore, for
fixed f,

Py (min f (1) > 7/2,1{i : fwi) < 1/2}] > me) <277
Consequently,
Py (3f € Bamn = min f(21) > 4/2,{i = f(wi) < 7/2}| > me) < B Bamym )2

and noting that |Bymym| = N(3, 7y (F),dsmym) < N(2,7,(F),2m, ), the proof is finished.
¢

By setting 6 = N'(3, 7y (F),2m,Q2)27™¢ we can write this result as

Py (3f € Fomin f (1) > 7, [{i + £ (wi) < 0}] > me(m. 5)) <6

where

E(m,é) — lOgN‘(%77r7(f)72m7 Q) +10g%

m

We now move from the double sample to bounds on probabilities. We do this through an
adaption of the ghost sample lemma of (Vapnik, 1998)

Lemma 1. Let Z be a random variable and let F denote a class of functions on Z. Consider 2m
iid samples, the first half denoted z™ and the second half w™. Let Py(f < 0) be the fraction of
the sample points w™ with f < 0. Let C¢(€) denote the constant event Cr(e) = {Pz(f < 0) > €}
and A?(e) the event in the second variable A?c(e) ={w™ : P,(f <0) > ¢€}. Then for any family

B} of events in the first variable z™,

Pym (uf(B; n cf(e))) < 2Pgmym (uf(B} N A% (e — %)))
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Proof. The proof follows that of (Vapnik, 1998)(relevant to the trivial case Bt = Z™) on page
132 very closely. ¢

Applying Lemma 1 to the result of Theorem 1 with
B} = {z"min f(2)) > 7}
we obtain the separation theorem

Theorem 2. Let Z be a random wvariable. Let v > 0 be fixred and let F denote a class of
functions on Z. Suppose the support of Z is contained in the subset Q@ C Z. Consider m iid
samples z™. Then

Pym (Hf € Fomin f(2) > 7, Py (f < 0) > e) <N (%,m(f),zm, Q) 9-me

The result can be restated; given 0 < § < 1,
Pzn (3f € Fymin f () 2 7, P2 (f < 0) > e(m, ) < 6
13

where

2 + log N (3, 7(F),2m, Q) + log %
- :

e(m,d) =

4 Extension to separability

To use Theorem 2 for learning, we extend the basic variables, following (Shawe-Taylor &
Cristianini, 1998), so that the event min; f(z;) > < in the result of Theorem 2 is satisfied
almost always. In this section we describe this extension.

Let Z = (X,Y) and let Q C Z contain the support of Z. Let Q™ denote the product space
containing the support of the m-sample spaces Z™ under iid sampling. Let V be a Banach
space with its dual V* and consider the direct sum Banach space

X=XxV

with norm |(z,v)[? = |z|? + |v[?. It follows( see e.g.(Megginson, 1991)) that X* = X* x V*
acts through

(", 0%) - (z,v) =2 -z + 0" 0.

For any Banach space K, let Br(K) = {k : 0 < |k| < R} denote the ball of radius R. Given an
m-sample k™ chosen from K we let B(K™*) denote the space K* of functions on K equipped the
pseudometric dpm. We let B(K*)r = Br(K*) and B(K*), , = {k : r < |k*| < s} denote the
relevant pseudometric subspaces of B(K*). Let A(X) = B(X*) + R denote the pseudometric
space of affine functions on X, with linear part in B(X™*), with pseudometric d,m and let
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A(X) = B(X*) + R denote the pseudometric space of affine functions on X, with linear part
in B(X™*), with pseudometric dzm. We use the shorthand notation

A=AX)=X"xV*x R
and
L=9B(X*)=X*"xV*"

In addition to the standard notation (x*,v*,b) for a point in 4 = X* x V* x R, for convenience
we often use the notation

(¥, ¢,b)
with ¢y € X*, ¢ € V*, and b € R and
(¥, b)

where ¥ = (1, ¢) € X* x V* and b € R. We also use the same notation (1, b) for a point in
A(X) = X* x R and the classifier

y = sign(y -z + b).
Consider maps
k: X =V 9)
and
K X > V" (10)

We use them to define extensions

Ex:X = X
by

Ex(x) = (x, ) (11)
and

E.m: A(X) = A(X) = A
by

(1h,b) = (om, b) (12)
where

o = (3w ). 9.0 (13
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We use the notation F,m to emphasize the dependence of this extension on the m-sample 2.
Let

Z=(X,Y)
and define the induced extension

Ez:7Z—Z
by

(z,y) = (Ex (2),y). (14)

For any class G of functions on X or X we extend to a class

G—G (15)
on Z = (X,Y)or Z=(X,Y) by the folding

9(2) = yg(=) (16)

9(2) = yg(2) (17)

These extensions accomplish the following for the classes of functions F = A(X) and

F=EnA(X)C A
Lemma 2. Let X and V be Banach spaces and let
X=XxV

with norm |(z,v)|? = |z|? + |[v|* denote the direct product and let X* = X* x V* denote its
dual. Let Z = (X,Y) and Z = (X,Y). Suppose that there exist maps

k: X =V
and
KX s V*

such that k3, - ke, = 1 if 11 = w2 and 0 otherwise. Consider an m-sample 2™ where the x
coordinates have no duplicates and define extensions Ex ( line 11),Ez ( line 14) and E,m (
lines 12 and 13).

If z = (z,y) where x is not in the support of the x coordinate of the m-sample 2™, then

E.m(1,b)(Ez(2)) = (¥,)(2)

and for i =1,..,m,

E.m(,b)(Ez(z)) > 1.
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Proof. To prove the first we calculate
E.n(,0)(Ex(z)) =4 Ex(v) +b=1¢ -z + (Z yi”;id((xiayi)ﬂ/}ab)) “Ket+b=1v- -2+
i=1

for z not in the support of z;,2 = 1,..,m. Consequently
and from the definitions 16 and 17 of the foldings

E.m (,0)(Ez(2)) = y(Eam (9, b)(Ex (2))) = y((4,b)(x)) = (4,b)(2).

To prove the second we note that on a sample point (x;, y;)
B (§,0)(Bz(2:)) = yi( Bam (9, )(Bx (w:1)) = yi(thm-Ex (1)) = s (T/Jwﬂryid((xi,yi)ﬂ/), b)+b)

= yi(¢ - 2+ b) + d((zi,yi), ¥, b) > 1
and the proof of Lemma 2 is finished. ¢

5 Abstract learning

In this section we combine the results of the last two sections to obtain a general learning
theorem. We now consider a learning algorithm in a general way. Later we will be more
specific. We first define the learning strategy O : Z™ —— A(X) which is a set-valued mapping

M Dm C A(X)

for some 2™ dependent family ©,m of subsets of A(X). We refer to the subsets O,m as optima.
We call a selection £: Z™ — A(X) from O a learning algorithm where for each 2™

L,m € Oom.
We write
(%, bs) = Lom (18)

as a shorthand notation for the solution produced by the learning algorithm. Here we do not
concern ourselves with the computational efficiency of evaluating the function £. A way to
think about the difference between £ and © is that if the learning algorithm is specified in
terms of minimizing an objective function J,» which depends upon the m-sample 2™, then
,m is the set of all minimizers of J,m and the classifier £,= is that point in O,m produced by
a specific algorithm chosen to perform this minimization.

Let

bzm = Eszzm = {(‘Ilvb) = Ezm(d}ab) : (djvb) € Dzm} (19)
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denote the image of O,m in A under the extension E,m. Let

Oam = UsmeqmO.m = {(U,b) = E,m(1h,b) : (1,b) € O,m for some 2™ € Q™)
denote all possible images of optima under E,m as z" varies over ™. Let

Oam = UzmeqmOym

denote all possible optima as 2™ varies over 2™,

By applying the extensions, Lemma 2 allows Theorem 2 to be applied to the class of
functions F = Oqm to provide performance bounds for the learning strategy .

Theorem 3. Let X be a Banach space and let 0 < 6 < 1 be fixred. Consider a random variable
Z = (X,Y) with support contained in Q C Z, where X has no point mass. Let V denote a
Banach space and consider the direct sum Banach space

X=XxV

with norm |(z,v)]2 = |z> + |[v|? and let X* = X* x V* denote its dual space. Suppose that
there exist maps

k: X =V
and
KX sV

such that K}, - kg, = 1 if £1 = 22 and 0 otherwise. Define extensions Ex ( line 11),Ez (line
14) and E.m ( lines 12 and 13). Let Q = EzQ. Let (4,b,) denote the solution produced by
a learning algorithm £ which is a selection from a learning strateqy O. Let e(,b) = Py(y #
sign(y - x + b)) denote the generalization error of the classifier sign(y - x +b).

Then
Pym (e(¢*,b*) > e(m, 5)) <
where

2+ log NV (%,Wl(éﬂm),Qm, Q) +log }

e(m,d) = -

Proof. Since the random variable X has no point mass the points of 2™ will be unique with
probability one and = will not be in the support of the fixed m-sample ™ with probability
one. Therefore with probability one we can apply Lemma 2. Since an error in the classifier
(¢, b) at z implies that (,b)(z) <0,

(z

e(y,b) < Pz((4.b)(2) <0). (20)

Also the first part of Lemma 2 along with the assumption that X has no point mass implies
that

Pz((#,b)(2) < 0) = Pz (E.m(,b)(2) < 0). (21)
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Consequently
Pym (e(¢*, be) > e(m, 5)) < Pym (PZ (Bor (9. 52)(2) < 0) > e(im, 5))

< Pym (3(\1/, b) € O.m and Pz ((T,0)(2) < 0) > €(m, 5))

— Pym (3@ € O.m and Pz ((T,0)(2) < 0) > e(m, 5)).

The second conclusion of Lemma, 2 allows us to utilize Theorem 2 with v = 1 applied the

class of functions Ogm on Z as follows;

Pzn (I(E.5) € D.n and Pz ((TD)(2) < 0) > e(m.0))

= Pym (3(\If,b) €O (T,0)(4) > Li=1,..,m, and Pz((T,0)(2) <0) > e(m,a))

—
N>

< Pgm (3(\1/,6) € Ogm : (T,0)(4) > 1,i =1,.,m, and Pz((T,b)(2) <0) > e(m,5)) <
where
2+ log N (%,m(égm), 2m, Q) +log 3

m

e(m,d) =

and the proof is finished. ¢

6 The main theorem

To characterize the performance of a learning algorithm using Theorem 3 we must understand

how the structural properties of the learning strategy affect the covering numbers of m; (f)gm)
To have practical utility we would prefer that this relationship be expressed in terms of quan-
tities that we can compute during the learning process. To this end we refine Theorem 3 so
that the performance guarantees depend on quantities available to the practitioner that we call
observables.

Consider a partition 24,k =1, .., K over Ogm. That is, let
A, CA k=1, K
satisfy
U2l D Ogm.
and
A, NAj =0, k#j.

This definition implies the existence of a function I : Ogm — {1,.., K} which designates which
subset each point lies in.

We prove

10
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Corollary 1. With the assumptions of Theorem 3, consider a partition g,k = 1,.., K over
Ogm. Let I : Ogm — {1,.., K} denote the function which designates which subset each point
lies in. Define

Aym i, = Oam N Ay (22)

Then
Pam (e(ta,b2) > €(m, 6, 1(Eam (,1,)) ) < 6
where

2+ log NV (2,7r1(2l i) 2m Q) +log%

m

e(m,d,k) =

Proof. We apply Theorem 3 to the substrategy defined by E7, 2. N O,m to obtain

Pym (Ezm (1h,b,) € Ay and e(thy, by) > e(m,5)) <
where

2 +log NV (2,7r1(919m ) 2, Q) +log }

m

e(m,d) =

Since the partition covers Ogm

Pam (e(ths,b2) > €(m,6, L(Eam ($,.))) ) = Pzm (ks Bom (1,b,) € g and (i, be) > e(m, 8,) )

and a union bound finishes the proof. ¢

We now choose the partition of Corollary 1 in terms of the values of observables. The
observables that we consider are special in that they need to be pullbacks of functions under
the extension F,m. More specifically, let

J: A= O

be a map to a space O of observable values. Normally this space will be some R? but that is
not necessary. J determines a function

Jom t A(X) — O (23)
through the pullback of the extension F,m;

Jom () = J(Eom (4,b)) = J(thom ,b). (24)

Recall from equation 18 that we denote the solution produced by a learning algorithm £
by (14, bs) = £,m. Let

zm - Zm(d}*a *)

11
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denote the value of the observable J,= at the solution provided by £.

We now specialize to O = RT. Although following analysis goes through in general, special-
izing to real valued observables makes the notation clearer. We now choose a specific partition
in terms of the values of .J. In particular, define

Ars = {(T,0) € A:r < J(U,b) < s} (25)
where
Ag- s = {(0,) € A:0 < J(T,b) < s}. (26)

to be the pullbacks under J of intervals in . Then let
A;,S = me N ./47"73 (27)

denote the intersection of these sets with Ogm. That is Aj s is the set of points (¥,b) € A such
that (V,b) = E,m(1,b) of some optima (1,b), for some m-sample z™ € Q™ and J,m(1,b) =
J (7/3Zm, b) lies between the appropriate interval. Notice that for convenience we have dropped
the notational dependence on 2, but that this dependence should be remembered.

We wish to choose a finite partition in terms of the value of J}». So that such a partition
will not include any sets with an infinite range of J* values it is necessary that the range of J*
values be bounded. Without much loss in generality we suppose that such a bound

0< Jhe < M(J,Q), V2" € Q™ (28)

exists where the M depends on the learning algorithm, the observable J and the support €.
In terms of A* this bound implies that A; ; = 0 for r > M(J, Q).

Given the assumption 28 there are many ways to partition this interval inducing a partition
of over Ogm. We proceed as in (Shawe-Taylor & Cristianini, 1998). Lay down a partial
arithmetic sequence

Jk = /Bak_lak =1,.,K
such that f is small, « > 1 and jx > M(J, Q). Denote
Jo=0".

We can solve for

N log o - logar
Define
Ay, = A]Icflvjk’ k=1, K (29)

Applying this construction to Corollary 1 we obtain

12
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Theorem 4. With the assumptions of T@eorem 3, consider the partition Ui, k =1, .., K defined
above for some ae > 1 and f > 0. Let I : Ogm — {1,.., K} denote the function which designates
which subset each point lies in.

Then
Pom (e(the,b2) > 1 (m, 6, I(Eem (1,0.))) ) < 6

where

M(J,Q)

A log
), 2m,Q) + log (2+W> +log5

m

2 +log NV (2,7r1(A*

Jk—1Jk

€1 (ma (57 k) =

This bound expresses the performance of the classifier (¢,,b,) in terms of the observable
value J}, in the following way. The performance of the classifier (1., b.) is expressed in terms
of covering numbers of the subset A7 | . defined by k = I(E.m (¢, bs)). But in this case the
definition of I is

I(Ezm(¢*ab*)) =k: J:m € (]kflajk]

where the interval (j_1, x| is [0, ] when k = 1. Therefore this bound expresses the perfor-
mance of the classifier in terms of two sequential values of J* in the partial arithmetic sequence
which contains J}n

To make this expression depend more exphc1tly on J}» we can proceed in the following

way. When J5 € (95-1, %]
A* C A%

Jk—15Jk
’ a ,OLJ;m

*n and therefore

Said differently, when k = I(E,m (s, bs)) > 1 then
A* C A%

Jk—1Jk Za ,aJ;‘m

If we split up the result of Theorem 4 into I = 1 and I > 1 and utilize the monotonicity of
covering numbers we obtain

sz((J:m > 6,3(1[1*76*) > 5(m757 J:m)) or (J:m S Ba€(¢*7b*) > 6*(m757B))> < o

where
. - . log M(2)
*
2+1logN | 5,7 ( J:m,aJ*m>’2m79 + log <2+W> + log §
e(m, 8, Jim) = -
m
and
) L R log M (J,9)
2 +log N (5,7r1 (A’[;_ﬁ),Zm,Q> + log <2 + W) +log i 5
6*(777,, 57 6) =

m

We apply the set theoretic identity By N Bs C (AN B1) U (A°N Ba) to obtain

13
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Theorem 5. Let X be a Banach space and let 0 < § <1, a > 1, and B > 0 be fixed. Consider
a random variable Z = (X,Y) with support contained in Q C Z, where X has no point mass.
Let V denote a Banach space and consider the direct sum Banach space

X=XxV

with norm |(z,v)[? = |z> + |[v|? and let X* = X* x V* denote its dual space. Suppose that
there exist maps

k: X —=V
and
K X=sV*

such that K}, - kg, = 1 if £1 = 22 and 0 otherwise. Define extensions Ex ( line 11),Ez (line
14) and E.m ( lines 12 and 13). Let Q = EzQ. Let (1,,b,) denote the solution produced
by a learning algorithm £ which is a selection from a learning strateqy O. Let a function
J : A — R' define a a real valued observable through the pullback 24. Let the value of
this observable at the solution be denoted Jin. Suppose there exists an M(J, Q) such that
0< Jm < M(J,Q), V2" e Q™. Consider the sets defined in 27.

Then

P (e(tbe, ba) > max (s(m, 8, J2), e0(m,0,8)) ) < 8

where
R log M (J,9)
2+ log N %,Wl(/l"}* ),Zm,Q + log <2+ﬁ>+log%
zm 706']*7”‘
s(m, 57 :m) = - -
m
and
) R log M(2) )
2 +log NV (5,7r1 (A’(;,’ﬁ),2m,ﬂ> + log (2 + ﬁ) + log 5
€x (ma (57 /B) =

m

Theorem 5 has some free parameters available. It would also be nice to eliminate the
€«(m,0,0) in the max inside the probability statement and have only e(m,d, Jin). We will
show for the 2-norm soft margin problem that we can determine a § that makes €.(m,d, 3)
extremely small so that we can effectively ignore it inside the statement while accounting for
the price one pays in €(m, d, J}n ). In this case the price is negligible.

7 Learning through minimization

Theorem 5 only depends on the learning strategy £ and not on learning algorithm £ except
through the condition that £ be a selection from . Up until this point we have not said very

14
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much about the choice of learning strategy © or the choice of function J which determines
observables J,m. We consider for the moment performance and ignore the important issue
of computation. Let us first ignore the €,(m,d, ) term in the bound of Theorem 5. Let us

consider for the moment trying to reduce the size A% T by defining the learning strategy
onNm

which outputs the same solution (g, by) for every p0331ble m~-sample;

Dzm =Lm = (djO,bU)'

We do not think this is a good idea but want to see why not in the bounds. Theorem 3 expresses
its performance in terms of the covering numbers of

Oam = U,meqn E,m (1o, bo)

but it is easy to see that despite the fact that we have one candidate classifier (g, by) the size
of Ogm can be very large. Indeed we see from this example that we desire the strategy to be
chosen so that the union of the images

s Oum = EymO,m

is small for the pseudometric determined by every other possible m-sample. This is only
the beginning of an investigation into the question of what constitutes good learning strat-
egy/observable pairs which we hope to continue in the future.

From the theorem we see that smaller 4* T is better. Consider observables .J,m where
7a *m
the difference between covering numbers of A and Aj- , is very small so we can use the latter
in the result of Theorem 5. This is not an unreasonable condltlon Indeed it is very similar to
the fact that in large dimensional spaces the covering numbers of the unit sphere is not much
less than the covering numbers of the whole unit ball. Since the covering numbers of Aj_ _ are
monotonically decreasing as s | 0 and the performance bounds are now in terms of the coverlng
numbers of A7_ ad.m(p,p) WE See that smaller J,» improves performance with the conclusion
that we should consider letting our learning strategy be the minimization of J,m. In particular
we choose a function J, pullback to the observable J,m and define

O,m = ar min J b
’ B (o) Tom (90)
to be the set of minima of .J, ,. We now refer to the observable J,m as an optimization criterion.
Now the relevant sets are

.A,’f’s = {Eym(1,b) : (1,b) minimizes Jym, Jym = Jym (¥, b) € (r,s],w™ € Q"} (30)

with 7 = Z2 and s = Zm. For fixed 2™ this is the union of the minima for J,» over the

other m samples w™ with minimum criterion value close to J}m.
We can now ask how to choose the optimization criterion J,=. Consider a modified opti-
mization criterion

M(J,Q)

. 1
2+ log N (%,m (A’(;,’ajzm(w,b))ﬂm, Q) + log <2 + %) +1log i 5

jzm(d)ab) = 5(m757 Jym (d)vb)) =

m

15
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Since this function has the same optima as J,m we get an almost perfect match; Let (14, by)
denote a minimizer for J,=, then

P (e(e,be) > Tin) <6

Consequently we can say that J is a good choice for the process Z if with high probability J}m
is small.

The observation on line 30 facilitates the estimation of the covering numbers in the result of
Theorem 5 when we use the learning strategy of minimizing the pullback( 24) J,m of a function
J: A — RT under the extension E.n. Indeed, Theorem 5 expresses this performance in terms

of the covering numbers of m; (.A”f,* ) and 7y (A5_ ﬂ) and the sets A%. and A%_
Z_m7aJ:m ’ thm 7aJ;m
are the images under the extensions E,m of sets of optimal solution vectors for other m-sample
values such that the optimal criterion value is within range specified by JI.. Consequently,
it is here where we impose our knowledge about the optimal solution vectors specifically as a

function of assumptions about the process Z, the function .J, and the extensions F,m and Fx.

7.1 Consequences of minimization

With this in mind let us address the general problem of bounding the covering numbers

N (6, m (A—ji,s), 2m, Q)

We first ignore the possible beneficial effects of considering the squashing function my and
bound these covering numbers by

N(e, Wl(A—,’i,s),2m,Q> SN(G,A—?’S, 2m, Q)

Since in general
[F(2) = g(&)| = lyf (&) — yg(2)] = | f(2) — g(@)|
if we suppose that
QC ((Q,2),Y)
with Q; C X and Qs C V then we can further bound these covering numbers by

N(E,A—,’Qs, 2m, Q) SN(G,A:,S,Qm, (Q1,99)) .

We do know something about these sets A} . For example, we know that
Al =0, 7> M(J,Q).

However we can say a little more

16
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Lemma 3. Suppose that J is monotonic in V* with respect to k* in the sense that if 1 =
Zle a%ﬁ;i e V* and ¢y = Zle a?ﬁ;i € V* can be represented on a common set of unique
points x;,1 = 1,..,k so that |al| > |a?| for all i with strict inequality for at least one i, then
J(, p1,b) > J(, a2, b). Suppose (s, by) is a minimizer of J,m. If the sample data is all from

one class y*, choose (., b)) = (0,y*). Suppose also that Q4 C Br(X). Then

[b2] <1 4[| R.

Proof. Consider first the case where the sample contains at least one point from each class.
Suppose to the contrary of the lemma that b, > 1+ |¢).|R. The argument for b, < —(1+ |¢).|R)
is the same. Then for y = 1, y(¢y - o + by) = 9y -z + by > 1 so that d((z,y), s, bs) =
max(1l — y(¢ - & + bs),0) = 0. On the other hand for y = —1,

d((2,y), Y, b)) =1 —y(hu - x + bs) =1+ ¢ -z + b > 2.

Since these inequalities are strict we can decrease b, while not changing d((x, Y), Vs, b*) =0 for
sample data with y = 1 and strictly decreasing d((z,v), ¢«, bs) = 1+, - & + b, for sample data
with y = —1. Since J is monotonic in V* with respect to £*, this contradicts the optimality of

Tom (,0) = (11 + 27 X1y d (21,4, b)) at (e by).
When the sample is all from one class y*, it is easy to see that that |b.| = |y*| < 1+ |[¢«|R
and the proof is finished. ¢

Although Lemma 3 provides a bound for b, it is in terms of 1, which is not very useful in
deriving bounds in terms of J}» . One further assumption alleviates this problem.

Lemma 4. With the assumptions of Lemma 3, we suppose further that J is dominated from
below in X* in that there exists constants ¢ > 0 and o > 0 such that

cl|® < J (4, ¢,b)

for any (¢, ¢,b). Then

1

|b*|§1+<sz>gR.
C

Proof. The proof follows directly by applying the bound on |b.| deduced from Lemma 3 and
* 1
then bounding 1, by |¢.| < (sz)E. ¢

c

We now want to utilize the result of Lemma 4. We use the following

Lemma 5. Let Z be a topological space. Let F = F1 + Fa be the direct sum of two classes of
real valued functions on Z. Let 2™ denote an m-sample from Z. Then for any 0 < p <1,

N(ﬁ,]:, dzm) < N(MG,Fl,dzm)N((l - M)E,j:g,dzm).

17
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Proof. For f = fi1+ f2 and g = g1 + g2

d:m (f,g) = max |f(z) —g(2)| = max |f1(2) + f2(2) = 91(2) — g2(2)]

zEZ™

< max|fi(2) = g1(2)| + max |f2(2) = g2(2)] = dem (f1, 91) + dom (2, 92)

ze2™

b
»T—p

d.m(f,9) < max (dzm(fl’gl) dzm(f2792)>
T p 01—y

Since generally a 4+ b < sup (% ) for any 0 < p < 1 we obtain

and consequently the product of an pe covering of F; with an (1 — u)e covering of F; is an €
covering of F and the proof is finished. ¢

To apply this result it is convenient to assume that J factors through £ in that
J:A—=RT
is determined by extending a function
Jri L —RT
to A by making it independent of the constants. We define
Lrs={VeLl:r<J(¥)<s} (31)
where
Lo s={Ve€L:0< T (P) < s} (32)
The next lemma follows directly from Lemma 5 and shows how to incorporate information

we know about the constant variables and the £ variables of optimal solutions into the covering
bounds.

Lemma 6. Suppose that J factors through £ and that A} o C My s X Q. s for families of subsets
Qs CR and M, s C L. Then for any 0 < p <1

N (67“4:,3727717 (91792)) S N(,U,E, Mr,872m7 (91792))/\/((]— - /«1’)67 Qr,sv| ’ |)

where the rightmost term is the covering numbers of the set of real numbers ), ¢ with respect
to the usual metric.

We can now prove

Theorem 6. Suppose we minimize the pullback 24 of a J which factors through L which is
monotonic in V* with respect to k* and dominated from below in X* with constants ¢ and o
as described in Lemma 4. If the sample data is all from one class y*, choose the particular
solution (1«,bs) = (0,y*). Suppose also that Q1 C Br(X). Then for any 0 < pu <1

242(2)eR
N (6“,4;':73, 2m, (1, Q2)) <N (e, Ly, 2m, (1, Q)) <% + 1)

18
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Proof. The proof follows directly from Lemma 6 using M, ; = £, ; and Lemma 4 and the fact
that

2B
N ol < B,|-) < = +1.

¢

Theorem 6 incorporated the bounds on the constants from Lemma 4 but used only the
crudest bound M, s = L, ;. We hope to incorporate sharper estimates M, ; in the future.

8 Covering numbers of linear functions

According to Theorem 5, to analyze the performance of a learning algorithm we need to analyze
covering numbers of classes of affine functions. Theorem 6 states under what conditions these
may be bounded in terms of the covering numbers of classes of linear functions. Although the
results of (Alon, Ben-David, Cesa-Bianchi, & Haussler, 1997) are very general they do not take
advantage of the linear structure of linear function classes. Indeed, application of the theorem
of (Alon et al., 1997) in the work of (Shawe-Taylor & Cristianini, 1998) provides bounds with
an accuracy term of the form

) log (32m)>

where H,m is an empirical mean. If for large sample size H,m is concentrated around its mean,
then it is easy to see that the log (32m) term causes this bound to become bad for large m. A
similar observation has been made in (Graepel, Herbrich, & Williamson, 2001). We remedy this
situation by mapping(following (Williamson et al., 2002)) from linear function classes to linear
operators so that we can apply the theory of covering numbers of linear operators. The results
for the 2-norm soft margin problem are presented in Section 9.1 but motivated the following
treatment. We require some preparation.

1
ezO(Hzmlog(H

zm

For a pseudometric space (M, d) the covering number N (e, M, d) is the smallest number
of open balls of radius e that cover M. The entropy numbers

en, = inf {e : N'(e, M,d) <n}

are essentially the size of the smallest n balls that can cover M. The dyadic entropy numbers
are defined to be

€p = €on—1.

The entropy numbers are essentially the inverse of the covering numbers, as illustrated in the
following lemma.

Lemma 7. Suppose that e, < f(n) were [ is a strictly decreasing function on the natural
numbers. Let €xo = limy, o f(n). Extend to a strictly decreasing function, also called f on the
non-negative reals. Then

N(e, M, d) <2771

for e > €xo.
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Proof. The assumption of the lemma implies that e;.-1 < f(n). Consequently, there is
an € < f(n) such that N(e, M,d) < 2"~1. By the monotonicity of the covering numbers
N(f(n), M,d) <27 1. For an arbitrary e € Q, e = f(f (¢)) > f([f (e)]) so that

N (e, M d) < N(F([F7H ), M, d) < 217171 < 2710

and the proof is finished. ¢

Therefore if we obtain a strict bound of f(n) on the dyadic entropy numbers this translates
to a bound of 2/7'(©) on the covering numbers.

Consider a linear operator S : H;y — Hs between normed linear spaces. The entropy
numbers of the operator S are defined to be the entropy numbers of the image of the unit ball.
That is

en(S) = en(SB1(H1),d2) (33)

where By(Hj) is the unit ball in Hy and ds is the norm of Hy. In a similar way we define

N(E, S) = N(E, SBl(Hl),dg). (34:)
Let
N(e, A C L(Hy, Hy)) :zléKN(E, S). (35)

denote the definition analogous to equation 8 for a subset A of L(Hy, H3) the space of bounded
linear operators from H; to Ho.

To analyze entropy numbers for linear function classes we construct the relevant linear
operator as follows.

Lemma 8. Let K be a Banach space. Consider an m-sample k™ = {k;,i = 1,..,m} constrained
to Q C K. Denote the constraint on the m-samples k™ € Q™. Let K : K* — I} denote the
linear operator

KEk* = (K* - ky k* - ko, o, k™ - o). (36)

Also let Q™ denote the subset of linear operators IC € Q™ induced by the constraint kK™ € Q™.
Then for any R > 0

en(B(K*) g, dpm) = Ren(K)
N (6, B(K*) g, dgm) = N (}%,/c)
and

N (e, B(K") p,m, Q) = N (%,Qm c L(K*,zg;)) (37)
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Proof. Consider two points £kj and ICk3 in the image of the unit ball By (K*). Then
g (CK]. JC3) = mae | (KR — (KR = ma k- s — 3 -
but the right hand side is equal to
dym (K1, k3)
when considering k] and k3 in B(K*);. Consequently
en(B(K™)1, dgm) = en(K)
N (e, B(K™)1,dgm) = N (e, K)
and
N(e, Q™ C L(K*,12)) = N (e, B(K*)1,m, Q) (38)

follows from the definitions 35 and 8. By the homogeneity of the pseudonorm dj= and the
space of linear functions( B(K*)r = RB(K*)1),

en(B(K") g, dgm) = Rey(B(K™)1, djm)

and the proof is finished. ¢

Therefore, a bound on the entropy numbers e, (K) is a bound on the entropy numbers
en(B(K*)1,dpm) and Lemma 7 can then be used to turn this into a bound on the covering
numbers N (e, B(K*)y, dpm).

9 Application to support vector machines

We now describe how the above theorems can be used for the o-norm soft margin problems with
criterion 4 with 1 < o < oo. Consider L,(X) = L,(X,D, i), the space of all real valued Borel
measurable functions with respect to the o-algebra( no connection between this o and that
defining the o-norm soft margin problem) of all subsets of X whose p-th power is integrable
with respect to the counting measure y defined by p(z) =1 for all z € X. L,(X) is a Banach
space with dual space Ly(X) where 117 + % =1 when 1 <p < oo. When p =00, Ly(X) is the
space of bounded functions on X with sup norm and L} (X) = L, (X) the space of functions
of bounded variation on X.(see e.g. (Yosida, 1978)).

Consider the choice V = L, (X),1 < 7 < co. We let r, = Ak(z) and £}, = £ k(z) where K
is the function which = 1 at z and zero elsewhere and A > 0 is some fixed constant.

Consider first 7 # co. Then V* = L,(X) where 1 + 1 = 1. Consider the function
J: X* X Ly(X) xR —RT
defined by

2 o
T 0,0 = LI (39)
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The assumption of X having no point mass implies that the z;,¢ = 1,..,m are unique with
probability one. Consequently, with probability one the optimization criterion defined through
the pullback 24 of J defined in 39 by the extension F,m is

R |1/J|2 + ‘E:il ylﬁzld((mlv yl)v 1/17 b) Z
Ton(1h,0) = J(am,b) = - =
|¢|2 + % Z:il dg((miv yl)v 1/17 b)

m

which is the g-norm soft margin optimization criterion 4.

When 7 = oo consider

2

The corresponding optimization criterion defined through the pullback 24 is

|1/J|2 + ‘Z;il ylﬁ;zd((m“ yi)’ ¥, b) ‘bv

m

Tom (1,0) = J(thom, b) =

Since the second term is a function of finite support it is in L1 (X). It is generally true that
V' is isometrically embedded in V** for any Banach space V (Yosida, 1978) so that L;(X)
is isometrically embedded in Ly, (X). Consequently we can compute the Ly,(X) norm of the
second term using the Li (X) norm. Therefore, using the fact that the x;,i = 1,..,m are unique
with probability one we obtain that with probability one

|1/J|2 + ‘Zgl yi“;id((mia Yi), ¥, b) ‘Ll B |¢|2 + % Zgl d((mi, yi), ¥, b)

m m

sz (1/17 b) =

which is the 1-norm soft margin optimization criterion 4. Therefore we can generate all the
o-norm soft margin optimization criteria in this framework.

Usually we do not concern ourselves with measurability issues but we feel at the minimum
the extension Ez should be measurable. In Lemma 13 in Appendix Appendix A: we prove that
it is for most of the o-norm soft margin problems. In addition, we now show that these criteria
satisfy all of the additional assumptions required in the theorems and lemmas of this section.
To begin with

. 1

AT
for the o-norm soft margin optimization criterion so we can choose

1
M(‘]v Q) = E
in the assumption of Theorem 4. In addition all the o-norm J are monotonic in L,(X) with
respect to k* and dominated from below in X* and so we can apply both Lemmas 3 and 4 to
obtain bounds on the constant term in terms of the optimal criterion value J}, if 1 C Br(X)
with probability one. J factors through £ so we can combine the bounds on the constants with
bounds obtained for the linear part J, using Lemma 5.
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9.1 Bounds for the 2-norm soft margin support vector machine

We first consider the general case when
Jg(x*,v*) _ |l‘*|2 + |’U*|2.

Then Jg(z*,v*) = |(z*,v*)]* and consequently Ly- , = %(X*)\/g so the covering numbers of
Ly- s can be computed directly in terms of the linear operator

(X, V) : X* — 2m

on the direct product Banach space through Lemma 8. If we apply the inequality £, s C Loy
then we see that all the covering numbers can be bounded in this way. We now show this
technique works extremely well when both X and V' are Hilbert spaces and apply this method
to the 2-norm soft margin problem. In this case X* is also a Hilbert space and the structure
of Hilbert space allows us to deduce results about the covering numbers from results about 2m
dimensional Hilbert space.

Theorem 7. Let X be a Hilbert space and let A > 0,0 < <1, a>1,0<pu <1 and
a small positive number 0 < ¢ < % be fived. Consider a random variable Z = (X,Y), where
X has no point mass and has support inside Br(X). Let 2™ denote an iid m-sample. Let
(4, bs) denote a solution to the 2-norm soft margin optimization problem (4) with o = 2
with optimal criterion value Jim = Jym (s, by). If the sample data is all from one class y*,
choose the particular solution (1., bs) = (0,y*). Let e(y,b) = Pz(y # sign(y-z+b)) denote the

generalization error of the classifier sign(y-x+0b). Then for some constant 1.86 < C' < 102.89,

Pym (e(¢*,b*) > max (e(m, 8, J5 ), € (m, 4, e))) <4

where
4a02(R2 + A?)s
e(m,d,s) = log (1 + 20l R2 A% )
1 8C2(R%2+A2%) (40)
log (5 + 4(ams)%R) + log <2 + Oglg# + log% + log ﬁ +2
+
m
and
log 82 (A%
log (5 + ek, /MWR) + log <2 + — lggcaA _> + log% +logﬁ +2
ex(m,o,e) =e + -~ .
(41)

Proof. Let H = X x Lo(X). From the previous section we know that with probability one the
2-norm optimization criterion equation 4 with o = 2 is the pullback

Jom (1,0) = J(¢hom, b)
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by the extension F,m of the function

J: X*x LX) x R — RT

defined by
Y2 + 19l
b) = ——. 42
T, pb) = L (42)
with r, = Ak(z) and £} = 1+ k(z). In addition, 0 < J#. < J.m(0,0) < 1 so we can use
1

Consequently we can apply Theorem 5. To get meaningful bounds we need to bound the
covering numbers

N G,WI(A—;;S),Qm, Q)
where = ((21,9Q2),Y) with
O = By (X)
and
Qs = Ba(La(X)).
From the direct product structure in H
(Q1,92) C Qn = B gz (H).

We go one step further than in Section 7 and use the sequence of inequalities

1 - . 1 — A 1 1
N (57 771(“4:,5)7 2m, Q) < N (57 A;‘:,sv 2m, Q) < N <§7 A::,sa 2m, (Qla QZ)) < N <§7 AS—,sa 2m, QH) .
Since J factors through X* x L3(X) and is monotonic in L}(X) with respect to r} = xk(z)

and dominated from below in X* with parameters ¢ = % and o = 2 we can apply Lemma 6 to

obtain that for any 0 < u <1

44 4(ms)3 R
N(%’ 3—,372m7 (91792)> SN(%aﬁo—,sa2ma (91792)) (%4_1) . (43)
Since
2
T, .0 = 2 (44)

it follows from the definition 32 that

‘CO—,s = %(H*)

(ms)2’
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and so obtain

N(%,E0_73,2m,(§21,92))</\/( B(H) 2mQH) (45)

(ms)2

The following theorem is used to provide bounds on these covering numbers through the use
of bounds on the covering numbers for linear operators. It appears that the utilization of the
linear structure of the function class provides bounds which are superior to those obtainable
by the more general results of (Alon et al., 1997).

Theorem 8. Let H be a Hilbert space. Consider an m-sample h™ constrained to h; € =

Bgr,(H),i =1,..,m. Let Ry > 0 be fized. There exists a constant 1.86 < C' < 102.89 such that

C?R?

when R2 <1
me

2p2p2
c?R?

R21 (1+ me2 )
N(e,B(H g, m,Q) <2 = o\ crirg

Before we begin with the proof we note that the conjecture of (Williamson et al., 2002)
implies we can choose C as close to 1.86 as we wish.

Proof. We use a version of Maurey’s Theorem, bounding e, (T") for any linear operator T :
I3* — 172, obtained in (Williamson et al., 2002) through an argument of Bernd Carl.

Theorem 9. Let T : 15" = I be a linear operator. Then

oo (1 1/2
enl) < 0| (L)

with a constant 1.86 < C' < 102.88.

We will also use the following technical lemma

Lemma 9. Suppose that nlog(1 +n) =& >1 and n > 0. Then

1< log (14 ¢)

n- §
Proof. Since the function 7 — nlog(l 4+ n) is increasing for n > 0 and nlog(l + 1) = 1 when

n =1, & > 1 implies that n > 1. Consequently ¢ = nlog(1l + n) > nlog(l + 1) = n. Therefore,
¢ =nlog(l+n) <nlog(l + &) and the proof of Lemma 9 is finished. ¢

We now begin proof of Theorem 8. Consider the operator H : H — [} defined in equation
36. We need only consider nontrivial H because in that case the theorem in proven. Select
any linear subspace H,, C H of dimension m which contains the orthogonal complement to
the kernel of H. It is clear that HH = HH,,. Since this decomposition is orthogonal the
length of h + hg for h € Hy,, and hg € H,; L is minimal when hy = 0. Consequently in addition,
HBy(H) = HBi(Hy,). Choose an orthonormal basis for H,, so that this basis determines the
isometry H,, = [3'. From Theorem 9 we know that there is a constant 1.86 < C' < 102.89

1/2
such that e,(H) < C||H|#,,|| (M) (the slight change in the range of C' from above
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is to generate a strict inequality in the bound). It is clear that ||H|g,, || < [|H|| and since
hi € Br,(H),i =1,..,m, we have ||H|| < R;. Consequently,

log (2 4 1)\ /2
en(H) < CR, (%) .
From Lemma 8,

log (2 + 1)\ /2
en(iB(H*)R2,dhm) = Rgen(H) < CR1R> (%) .

Therefore we can apply Lemma 7 to

log (2 + 1)\ /2
f(n) = CRyRy (L G )>
n
with €5, = 0 and its natural extension to the non-negative reals. To do so we need to compute
m 1/2 m
fL To this end, let ¢ = f(n) = CRyRy (<) Then 2ELEY — (76592 50 that

2 p2 p2

if we let n = 7 and § = m(#ﬂb)2 then nlog(l + n) = ¢ and the assumption Cfgf'? <1
amounts to £ > 1, so we can apply Lemma 9 to obtain that

< log (1 +¢)
- £

and since n = %

1
n

we obtain

2 P2 P2
f*l(e)SCRi;R?bg(ler( ¢ )2)

€ CRi1R>
We can now apply Lemma 7 to obtain

2 p2 p2
c?Rr}R3

f\[(ﬁ, %(H*)Rw dhm) <2 ¢ log (1+m(OR61R2 )2>

and the proof of Theorem 8 is finished. ¢

In succession we apply the bound 43 flollowed by inequality 45 followed by applying Theorem
8 with e = £, R? = R? + A? Ry = (ms)2 and m — 2m. We obtain that for the C' in Theorem
2

8, when s S m

2
. (1+‘2O2(R‘L2+A2)5> ) (46)
(1= p)

1 402 (R2+A2%)ms 1
N(%7A3,5a2m7(91,92)>§<w )2 s

Consequently, by letting s — «s in the inequality 46, Theorem 5 tells us that

12

2aC?(R? + A?)

Pzm (J;‘m < and e(ty, by) > max (e(m, 8, Jim ), € (m, 6, 5))) <40 (47)
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where
4aC?(R? + A?)s 2
= 1 1
e(m, 0, s) 2 og ( + 2aC2 (R 1 A2)3>
1 log — L. (48)
log (4+4((fé:nj))2 L 1) + log (2 + —Olgogf ) +1log 3 +2
_l’_
m
where we suppress its formal dependence on  and
4C%(R? + A?)pB w2
«(m,0,08) = 1 1
&«(m, 0, ) 2 °8 ( 3R A2)5>
(49)

L log =1
4+4 R g
log(%+l>+log<2+ 10522>+log%+2

+

m

The proof of Theorem 7 is essentially finished. We complete the proof in Appendix
Appendix B: where we choose 5 so that e.(m,d,3) is so small that we don’t mind it in
max (é(m, d, Jim), €x(m, 6, 3)). ¢

We note that we can continue in this manner to choose a so that the second term

log BC2(R2+A2)
2272
log <5+ \/E%\/MW@ +log | 24+ ——555— | +log g +log 7 +2

m

in the definition (41) of .(m, d, e) is small. Having done so would guarantee that the term

log%+logﬁ+2

m

in the definition (40) of £(m, d, s) is small. However we will not carry out these details here.

9.2 Bounds for c-norm and other learning strategies

When o # 2 we cannot proceed in such a straightforward manner as we did in Section 9.1.
As discussed at the beginning of this section, the results of the previous sections apply. In
particular Ez is measurable and we can choose M(J,Q2) = <-. In addition all the o-norm
criteria are monotonic in L, (X) with respect to x* and dominated from below in X* and so we
can apply both lemma 3 and 4 to obtain bounds on the constant term in terms of the optimal
criterion value J}. if Q3 C Br(X). J factors through £ so we can combine the bounds on
the constants with bounds obtained for the linear part J, using Lemma 5. Consequently, to
provide specific bounds as we did in the 2-norm case what is left is to provide bounds on the

covering numbers of L, ;.

In Appendix Appendix C: we describe a program for analyzing the covering numbers of
L, in terms of covering numbers of operators from X* — (2™ and V* — [2™. We do this for
a large class of criteria containing the o-norm soft margin criteria.
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10 Symmetries in J and prior information about 7

All of the previous bounds were in terms of a set 2 C Z which contained the support of the
random variable Z. Consequently, if we do not know 2 then we will not know the bounds.
On the other hand if we know enough about the support that we can construct a set which
contains the support then we can use this set in these bounds. We now consider a learning
problem where we have some information about Z and we want to use that information to
determine something about A. We show that if the function J has some symmetry properties
that we can determine a dependence of A on Z so that we can remove the scale dependence of
the bounds. We now make A a function of the random variable Z and formally indicate A’s
dependence on Z as A(Z) where now A : Z,., — RT is a real valued function on the space Z,,
of Z-valued random variables. It is important to note that A is not a real valued function on
the base space ( also noted Z) of the random variables. Most of the discussion below can be
carried out in general, but to be specific we stick to the 2-norm soft margin problem.

1 1 «
Jom z(1,b) = - <|T/J|2 + N izzldz(ziﬂl}ab)) (50)
with
d(z,1,b) = max(1 — y(¢ - = + b),0). (51)

Consider the affine transformation X — rOX + xy where r is a scalar, O is orthogonal,
and z is a constant. We denote m copies of this transformation by X™ — rOX"™ + zi*. Let

arg min J,m ,b
g uin z(¥,b)

denote all solutions of the 2-norm soft margin optimization problem.

Lemma 10. Suppose that
A((rOX +0,Y)) = rA((X,Y)).

If (¥, B) € argmingy, 3y J.m 7(3,b), then

1 1 .
(;O\I/, B — ;O\Il ’ 370) € arg {Elg)l J(r(’);v-l—xo,y)m,(r(’)X—l—;vo,Y)(7;/)7 b)

)

Proof. Since A((rOX +,Y)) = rA((X,Y))

1 1 <
J(rOeraro,y)m,(rOXJraro,Y)(7;/)7b) = m <|7/)|2 + A2(T’OX T 20,Y) Zdz((roxz + anyi)awab)>
’ i=1

1 1 -
= ™ <|7/”|2 + m ;dz((r(')xi + xo,yi),z,/),b)>
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but since ¢ - (rOxz + xo) +b = rOW -z + (- 29 +b) and < O, Op >= |h|? if we let ¢ = rO)
this becomes

1
mr2

, 1 <« . 1 Sl
<|¢|2+ A2(z) Zzzldz((mzayz)a 1!}7 ;01/15130‘*‘17)) = ﬁjzm,Z(¢a;O¢m0+b)

Since

1
min J,m ,—O1 - xg+b) = minJym ,b
b T2 (0 OV 0 +0) = puin en 2(9,0)

the result follows. ¢

Consequently, if the function A has the symmetry property required by Lemma 10 then the
classifiers determined by the soft margin problem are equivariant to translating and normalizing
the data. This important fact can remove the dependence of the performance on scale choice.
Instead of stating a general theorem in this regards we choose a specific function and show its
effect for the 2-norm soft margin support vector machine.

Define

A(Z) = @éﬁl{ {r: supp(X) C B(xo,r)}

for some © > 0 where inf, , {r: supp(X) C B(zo,r)} is the radius of the smallest ball con-
taining the support of X. Then it is clear that A satisfies the covariance condition A((TOX +
20,Y)) = rA((X,Y)). In addition, if R = infy, {r : supp(X) C B(zo,r)} then A(Z) = OR
and we can translate X — X = I_I{X — %xo so that in the X variables

A((X,Y)) =6

Let (1., D.) be a optimizer of J,m z. From Lemma 10, (4,0) = (Ribs, by 4 9. - o) is an
optimizer of J(:i,y)m,(X,Y)' Since 1/; d4+bh= V-z+b

Pz(sign(yh - x +b) #y) = Py - (sign(ih - £ + D) # )
so that we can apply Theorem 7 to obtain

Theorem 10. Let X be a Hilbert space and let © > 0, 0 < § < 1, a > 1,0 < pu <1
and a small positive number 0 < e < % be fized. Consider a random variable Z = (X,Y),
where X has no point mass and define R = inf, . {r : supp(X) C B(zo,r)} and A(Z) = OR
where B(xg,r) is the ball of radius r centered at the point vo € X. Let 2™ denote an iid m-
sample. Let (14, by) denote a solution to the 2-norm soft margin optimization problem (4) with
optimal criterion value Jim = Jym (14, by). If the sample data is all from one class y*, choose
the particular solution (1., by) = (0,y*). Let e(y,b) = Pz(y # sign(y - x + b)) denote the
generalization error of the classifier sign(y - © + b). Consider the centered and scaled variable
L= 11—{(:1:—:1:0) where xg denotes the center of the smallest ball which contains the support of X .
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Let Jom = miny, p) L+ @2 S d2((£i,v:), 1, b)) denote the optimal value in the centered
normalized coordmates

Then for some constant 1.86 < C' < 102.89,

Pom (e(l/z*,b*) > max (e(m, 8, Jom ), £(m, 6, e)*)> <6

where
4aC?(1 + ©2)s 2
§,8) =——————1 I+ ————
e(m. ;) w? og{tt 2aC?(1 4+ 602)s
log 8C2(1+0%) (52)
log (5 + 4(ams)%> + log (2 + %) +log ; + log ﬁ +2
+
m
and
log '8022(1;622> 1 1
log (5—}-\/_0,/ 1+®2)> + log 2+% +log 5 +log = +2
de) = .
e«(m,d,e) =e + -~
(53)

11 Minimizing empirical means

An important property of the o-norm soft margin criteria is that they are defined by empirical
means. To be more precise, let

pzm

be the empirical measure associated with the m-sample 2. We denote E,_ ,, the process of
taking the empirical mean. In this section Ez denotes the expectation with respect to the
random variable Z, as opposed to the rest of the paper where it is an extension. Then the
o-norm criterion can be written

(1h,b) = WJF—E (d? (2,4, b
zm m AU p,m 271!}7 ))

Since Ezm Ey_,, = E7 we obtain

2
O B (2. 1).

B (Jm ($8)) = 2= +

Define the function

Wy L B (.. (54

JZ(¢7b) = EZm( zm (¢ b)) AC
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Let (¢z,bz) denote a minimizer of Jz with minimum value J} and (¢,m,b,m) denote a mini-
mizer of J,» with minimum value J}». Then

Tim = Jz = Jom (om,bom) = Jz(Yz,bz) < Jom(Yz,bz) — Jz(Yz,bz)

55
e By (€7 (2. 02.b2) = o (21 2,b2) %5)

and

‘]2 - J:m = JZ(Iﬁz,bz) - sz(l/fzmabzm) S JZ(T)[}Zm,bzm) - sz(¢zmabzm)
1
= E(Ez(da(zad)zmabzm)) - Epzm (d0(3a¢zmabzm))) (56)
1

S E sup (EZ(dU(za¢7b)) - Epzm (dg(zvz/)ab)))
(¥,b)€EDq

Putting bounds 55 and 56 together implies that

* * 1 a (o2
|JZ - sz| < E sup |EZ(d (377/)7 b)) - Epzm (d (377/)7 b))| (57)
(¥.b)eD

where Dg =9Dq U (¢z,bz) so we can bound

Pam(|J7 — Jim| > €) < Pzm ( sup |Ez(d”(z,9,b)) — By . (d°(2,9,b))| > 6N> -
(Vb)eDd

The righthand side can be bounded by theorems on the uniform converge of empirical means
in terms of the covering numbers of the set of functions d”(z,,b) determined as (¢, b) varies
over OFY. See (Vapnik, 1998) for example. However, what is more important is that the one
sided bound 55 can be used to bound

PZM(J:m Z J} + 6) S sz (Epzm (dU(Z,Q/Jz,bz)) — Ez(da(z,¢z,bz)) Z EAU)

which can be bounded in terms of the convergence of empirical means but this time the function
d?(z,vz,bz) is fixed because (1z,bz) is not a random variable. Therefore there will be no
function class complexity term and if we can bound the size of (¢z,bz) then we can use the
Hoeffding bounds (see e.g. (McDiarmid, 1991)) and this probability should be very small. We
can prove the following for the 2-norm strategy.

Theorem 11. With the assumptions of Theorem 7, let 0 < §<1 be fized and let Joo (1), b) =
ﬁEZ(dz(z,q/J,b)) be the mean infinite sample 2-norm criterion and let (Yoo, boo) one of its
minima. Let [0 denote the root of the second moment of the margin of the errors of (oo, bso)-
In addition, let the mean m-sample 2-norm criterion Jz, defined as in 54, have a minimum
value J7.

Then for some constant 1.86 < C' < 102.89,

Py (e(@/;*,b*) > max ((m, 8, J} + €),¢(m, 6, e)*)) <5+4
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where
4aC2(R2 + A?)s 2
d,8) = 1 1
e(m, d, s) 12 og( + 20C (R +A2)s>
1 8C2(R2+A2) 58
log (5 +4(am3)%R) + log <2 + Ogl(ﬁ# +log } +logﬁ +2 (58)
+ Y
m
log (5+\/E% (1{27.?72)}2> + log 2"‘# +log%+logﬁ+2
d,¢e) =
e«(m,d,e) =e + — :
(59)

and

2
R 1

4(1+uoo) log
A2 m

€= 6(57 m, RnU'OO) =

Proof. As mentioned above, to apply the Hoeffding inequality we need to bound d?(z,vz,bz).
We proceed first by bounding 1z in terms of 9.

Lemma 11. Consider the mean o-norm soft margin criteria in 54. Let (¢pm,,bm,) and
(Vmys bmy) denote minimizers of Jz when m = my and m = mgy respectively. Suppose that
1 <mqy <mo <o0. Then

|Yma| < |, |-
Proof. We suppose to the contrary that |¢,, | > |¢m,| and write the abbreviation

I%/)I2

Jz(,b) = + D%, b).

Then

9 2
|7/Jm2| + D(¢m2,bm2) = (L — L) |1/Jm2|2 + M + D(l/fmzabnw)
mso ma

my m1

LY e il
_ - m - D m?bm
< (= ) WP+ 222E 4 Dy,

mi

2
but since (¢, ,bm,) is optimal when m = ma, W"’Q‘ + D (Ymy, bm,) < % + D(Ymy, bmy)
and we obtain

L LY g el D) < (= LY g B D )
ml 1 m2 2 2/ — ml 1 m2 1° 1
2
W’”“' + DYy biny )
which contradlcts the optimality of (¢,,,,bmn,) and the proof is finished. ¢
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If we let m = my and denote as before (¥z,bz) = (¥m, by ) and consider (oo, bso). Then
Lemma 11 implies that

[z < [Pol- (60)

With a slight modification of the proof of Lemma 3 we conclude |bz| < 1+|9z|R < 14+|¢)o| R
so that

(Yz,bz)

is bounded in terms of |t/ | uniformly in m. Consequently we desire to bound ||
For a fixed (¢,b) let the map to margin be written

zap<z>=ﬁy(¢-x+b>

and let the induced probability measure on margin be denoted p,,.

Lemma 12. Let (10, bso) denote a minimizer of the mean infinite sample 2-norm soft margin
criterion Jo. Let p, denote the margin distribution measure for (oo, boo), and let

f,soo Pzdpp

be the root of the second moment of the margin less than s. Suppose that p, is absolutely
continuous. Then

1
|thoo] < —.
H2.0

H2,s =

Proof. Let (o0, bo0) = (¥, B) with |¥| =1 and r = [1)oo|. We write

= =

Bold ) = [ (=),
—00
where dp denotes the integration process. Since (%oo,bs0) i @ minimizer, r should be at a
minimum and since p,, is absolutely continuous, a critical point with respect to r is characterized
by

= =

/ (1 —rp)pdp, =0.

o0

except at the endpoint » = 0 in which case the lemma is proven. Solving for

1

="
fjoo :02 dpp
and applying Schwarz’s inequality

v v L[ 1
[ o< (" pan) ([ 1)’
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implies that

Since p2 ¢ is monotonically increasing in s, fo 1 = 2,0 and the proof Lemma 12 is finished. ¢
Noting that oo = p2,0, Lemma 12 proves that [bz| <1+ #% so that

R
0 < d*(2,92,bz) <4(1+—)?

Moo

and the Hoeffding inequality (McDiarmid, 1991) can be applied to obtain

P (Jim — 5 > €) < Pgm By, (d*(2,97,07)) — Ez(d*(2,97,b7)) > eA?)

274
—m—
<e (160+Es)

and the proof of Theorem 11 follows easily. ¢
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Appendix A: Measurability of the extension

Lemma 13. Let A > 0. Let X be a Banach space and V = L,(X) for some 1 <p < 0o and
let X = X xV denote the direct sum. Give both Z = (X,Y) and Z = (X,Y) the usual product
metric and equip both with the Borel o-algebra for their metric topologies. Then the map

(@,y) = (2, Ak(2),y)

18 measurable.

Proof. We prove the map = — (x,k(x)) is Borel measurable. The result then follows for the
product spaces easily.

It is easy to see that any v € L,(X) has a countable support. Consequently any point in
X can be represented as & = (29, Y ;_; @jky,;) for some countable set of values a;,7 = 1,.., and
some countable set of unique z; € X,7 = 1,... Consider the preimage of the radius € open ball
about such an &

{z:[(z,k(2))) — 2] <€}

which is defined by

|z — xo” + |k(2) =D aik(z;)|* < €.

i

If z is not in {z;,i = 1,..}, |k(z) — X, aik(x;)|? is constant in z so this condition is an open
or empty ball about 7. Consequently the preimage is a (possibly empty) open ball minus at
most a countable set of points and so is open and so Borel measurable. Since the open balls
form a base for the metric topology and the process of taking preimages commutes with unions,
the preimage of any open set is a Borel set. Let £ denote the Borel sets whose preimage is
Borel measurable and let O denote the sets of the topology of X. Since the process of taking
preimages commutes with unions, intersection, and complementation, £ is a o-algebra and
since it contains O and is contained in the Borel and the Borel is the smallest containing O it
must be the Borel. The proof is finished. ¢
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Appendix B: Completion of Theorem 7

Here we complete the proof of Theorem 7 by choosing 8 so that e.(m,d,3) is so small that
we don’t mind it in max (é(m, d, Jim ), €x(m,d, 3)). Since the first term in the expression 49 for

e«(m, 0, 8) is independent of m we choose 3(¢) to solve

4C2(R2 2 2
¢ = C(R +A)ﬁlog 1+ P
w2 20%(R? + A7)

for small ¢ and then write

6I(Tn‘a 578) :e(m,é,s,ﬁ(e))
2(p2 2 2
_4aC (R*+ A%)s log (1+ i
w2 2aC?(R? + A?)s

1 log -+
log (7“4((?1”;))“{ + 1) +log (2 4 —pwa? ’3(°>A2> +log § +2

log

_l’_

m

€x1(m, 0,¢) =e.(m, 0, B(e))

1 log —1—
log <4+4((T€Ef>))2 R 1) +log (2 + —EAs ) +log § +2

=e+

m

Write equation 62 as

fznlog(l—l-l)
n

2C0%(R2+A?)

where n = 2 5 and ¢ = ¢/2. We use the following technical lemma.

Lemma 14. Let £ = nlog (1 + %) with 0 < € <274 Then €2 <n < 1.

(62)

(63)

(64)

Proof. We bootstrap. The monotonicity of the function nlog (1 + %) and the assumption 0 <
¢ < 1 implies that 0 < n < 1. Therefore, £ = nlog (1 + %) >nlog(l+1) =nand so & > 7.
Therefore, n < 2% and ¢ = nlog (1 + %) > nlog (1 + 2%) > 45 and the first inequality is proven.

In addition we have the improved inequality

1
< —.
T= 1610g17

The lemma is proved if we can show that

1 1
n2log|14+-) <1
n

36



LANL Technical Report: LA-UR-02-1933 Appendix B: Completion of Theorem 7

forall 0 <n < ﬁg”. To this end we define F'(n) = 77% log (1 + %) and show that F(n) <1
when 0 <7 < ng?' Since F'(0) = 0 and
1 _log(l—klﬁlog17)<log81<z<1
16log17)  /I6logl? ~ 64 — 8 —
it is sufficient to show that the derivative F'(5) > 0 for 0 < 5 < ng?' Since logw = 11?1—12”,
1
1 1 1 -
=_— | Ip721 1 Y _ 3"
(n) =1 2<277 2 n( +77> 7721+77>
and it follows that F'(n) > 0 for 0 < n < i if and only if
1 2
Gp)=In{l+-)—-———2>0
m=tw(1+1) -
for 0 < n < ﬁg” . Since G(0) = oo and G(ngn) = In(1+16logl7) — H#l >
161log 17

In65—2>0,G(n) >0for0 <n < ﬁg” follows if the derivative G(n) <0for0<n<

_ 1
) 16log17"
Since

L, 2
n(l+mn)  (1+n)?

G(n) =—

it follows that G (n) <0 if and only if % > % which is true for all 0 < 7 < 1 and the proof is

finished. ¢
This inequality written in terms of S through the relations n = 202“?7;&)6 and £ =¢/2 is
¢2 12 ¢ 12
- < < — 65
s Rt A7) =P S g eamz+ A7) (65)
We use the inequality
1 1
4+4(8)2 4(6)2
(1= p) (1= p)
for any ¢, along with inequalities 65 to bound and simplify equations 63 and 64;
e1(m,d,s) <e(m, 9, s)
4 02 R2 AZ 2
_ 4aC%( 2+ )3]og (1+ 20402(152+A2)3>
8 (66)

1

log 8C2(R2+A2)
log (5 + 4(ams)§R> + log <2 + #> +log 5 + log 72, +2

log a

_l’_
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and

€x1 (ma 57 2) Sg* (ma 57 2)

log 8C2(R2+A2)
2.2A2
log <5 + ek, /7(R2TA2)R> +log | 2+ 7lggaA +log 3 + log ﬁ +2

m

=¢+

(67)

Finally we note that the complement J}m» > WZJFM) of the event in the result 47 implies
that

e(m, 8, J5m) > 1

because nlog (1 + L) > 1 if n > 1. Therefore the result is also correct on the complement and
the proof of Theorem 7 is finished.

Appendix C: Bounds for c-norm and other learning strategies

Here we bound the the covering numbers of £, ; in terms of covering numbers of operators from
X* = 2™ and V* — [2". We do this for a large class of criteria containing the o-norm soft
margin criteria. We proceed by covering the relevant sets by unions of products. Recall the
definition of the pseudometric spaces B(K*), ; for a Banach space K defined at the beginning
of Section 4.

Theorem 12. Let X and V' be Banach spaces and let 0 < r < s be fized. Let X=XxV
denote the direct sum Banach space with norm |(z,v)|? = |z|> +|v|?>. Let X* = X* x V* denote
dual space of X. Consider the function

JL L — ﬂ%+
defined by
Je(a*,v%) = |2*| + co*|¢

for some o, &, and c¢. Let N be a natural number and let (Q1,Q2) € X X V be a product. Let
the 2m sample (x,v)>™ be chosen from (Q1,Qs). Then for any 0 < a; < 1,i =1,..,N,

N(Ev Er,sa 2m7 (Qla QZ))

<N(esv o+ 1 2m0
= <€()( ()€m2>

(%)%7(3_(2_1)5)%72771, QZ) .

N
+ ZN (aie, B(XT)

=1

1 1,2m,Q N 1—0[1'6,%‘/*
oo ) (( e, B(V*)
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Proof. Write J; = i+ v where p = |2*|2 and v = c|v*|¢. Then
Lrs={r<p+v<s}

We want to cover this set with a union of rectangles. Let 6 = £ and define the collection of

N
sets
{i—1)0 <p<id}, i=1,.,N.
Since p > 0, when r < p+ v < s it follows that 0 < p < s. Consequently,

{r<,u+1/§s}:{r<,u+1/§s}ﬂ(Uf\il{(i—1)5<u§i5}u{u:0,r<y§s})

=0, (fr<p+v<shn{i-16 <p<io}) U{n=0,r <v<s}
However since
{r<p+v<sin{ii—-1)<p<id}Cc{li-1)d<pu<id}n{r—id<v<s—(i—1)}
we obtain that
{r<u+ugs}cuiN:l({(i—1)5<ugia}m{r—w@g3—(¢—1)5})u{uzo,r<ug3}.
Since N is subadditive under unions,
N(e, {r < Jz < s}, 2m, (Q1,9Q2)) <

N(e,{u=0,7r <v<s}2m, (Q1,0))

N
+> N(edli- D5 <p <ishn{r—id <v<s—(i—1)5}2m, (%)),
i=1

Since the dual space X* acts like
(x*,0*) - (z,0) =2" -z +0" v
and (Q1,2) is a product, it is clear that
Ne,{u=0,7r <v<s}2m,(Q1,0)) = N(e, {r <v < s}, 2m, Qg).

In addition, we can apply Lemma 5 to the two classes of functions {(i — 1)d < p < 0} and
{r—id <v <s—(i—1)d} to obtain that for any 0 < o; < 1

N(e,{(i ) <p<idtn{r—id <v<s—(i—1)8},2m, (91,92)})

<N (i, {(i —1)6 < pu <id},2m, Q)N ((1 — ay)e, {r —id <v < s— (i —1)d},2m,Q2))

Putting this all together in terms of the variables defined by p = |2*|¢ and v = c[v*|¢ finishes
the proof. ¢
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We use Theorem 12 to provide bounds in terms of covering numbers of linear operators.
Recall the definition (35)

N(e,A C L(K*,12"))
of the supremum of the covering numbers of operators constrained to K € A.

Theorem 13. Let 0 < r < s. Under the assumptions of Theorem 12 let the linear operators
X X* = 12" and V : V¥ — 12 be determined as described in Lemma 8 from a 2m-sample
(z,0)%™.

Then for any 0 < a; <1,i=1,..,N,
N(Ev Er,sa2m7 (91792))
<N (e(55,08m € LV, 2m)
s

s—(i—1)4

C

N
+ZN(aie(ia>—%,Q§m C L(X*,zggn))N((l — a;)e( )7, 03" C L(V*,liom))-
i=1

Proof. To our knowledge, sharp bounds on the covering numbers of annuli do not exist. How-
ever we can bound them by the covering numbers of the closed ball

N(‘S?%(K*)p,072m791\' C K) S N(s,%(K*)U,Zm, QK C K)
but Lemma 8 shows that
N, B ) g 2m, Quc) = N (2, 95 € LK 12

Substitution of this fact for both K = X and V into the result of Lemma 12 finishes the
proof. ¢

We mention that since 0 < o; < 1 and N are arbitrary, o; can be chosen to minimize or
approximately minimize the ¢ 4+ 1-th term in this sum and then N can be chosen to minimize
this sum. However, this is more effectively performed after specific bounds for these covering
numbers are utilized.

To complete the general picture we need bounds on the covering numbers for linear operators
2
T:S =10

where S is a Banach space and we need to estimate the worst case defined in 35. However,
if the domain restriction 2y C Br(X) for some R is used these operators are bounded by R.
Likewise if there exists an Ry such that |k, |y < Ra for all z € Qs the operators V corresponding
the second component are bounded by Rs. If we use bounds which are expressible in terms of
the norm of the operator then the worst case bound 35 can then be estimated simply. In this
case, the following corollary is very useful.
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Corollary 2. With the assumptions of Theorem 13, suppose that Q1 = Bpg,(X) and Qs =
Br,(V). Define Lr(K*,1>™) C L(K*,I>™) to be those linear operators with norm < R. Then
forany0<oa; <1,i=1,..,N,

N (e, Lrg, 2m, (21, D)) < N(RLz(g)%,Ll(v* 12m) © L(V*,12m) )
N e ot « 19m « 12m e (s—(i-1)d\—1% x 712m x 12m
+ 0N (i (10)7 %, T (X7, 120) € DX B )V (1= )iy (20 T8, Ly (v, 20) € L(F™,1200)).

c

Proof. The definitions of Q; and Qp imply that |X| < Ry and |V| < Rp. Since Lr(K*,12™)
RL1(K*,1%™) the result follows.

* |

There are many strong results in terms of the operator norm when S is a Banach space.
See for example (Carl, 1985) for general results and for strong results when S is a Banach space
of type p. For the og-norm soft margin picture we need bounds on the covering numbers of X*
and Ly(X). Indeed, (Carl, 1985) has strong results for I for finite N, which if extended to
the N = oo case would be useful here and we have shown good bounds in Section 9.1 when X
is a Hilbert space.
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